Copied to
clipboard

G = Q8xC32order 72 = 23·32

Direct product of C32 and Q8

direct product, metacyclic, nilpotent (class 2), monomial

Aliases: Q8xC32, C12.5C6, C2.2C62, C4.(C3xC6), C6.9(C2xC6), (C3xC12).5C2, (C3xC6).17C22, SmallGroup(72,38)

Series: Derived Chief Lower central Upper central

C1C2 — Q8xC32
C1C2C6C3xC6C3xC12 — Q8xC32
C1C2 — Q8xC32
C1C3xC6 — Q8xC32

Generators and relations for Q8xC32
 G = < a,b,c,d | a3=b3=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 36, all normal (6 characteristic)
Quotients: C1, C2, C3, C22, C6, Q8, C32, C2xC6, C3xC6, C3xQ8, C62, Q8xC32

Smallest permutation representation of Q8xC32
Regular action on 72 points
Generators in S72
(1 40 31)(2 37 32)(3 38 29)(4 39 30)(5 35 27)(6 36 28)(7 33 25)(8 34 26)(9 24 14)(10 21 15)(11 22 16)(12 23 13)(17 54 50)(18 55 51)(19 56 52)(20 53 49)(41 71 45)(42 72 46)(43 69 47)(44 70 48)(57 68 61)(58 65 62)(59 66 63)(60 67 64)
(1 13 5)(2 14 6)(3 15 7)(4 16 8)(9 36 37)(10 33 38)(11 34 39)(12 35 40)(17 62 69)(18 63 70)(19 64 71)(20 61 72)(21 25 29)(22 26 30)(23 27 31)(24 28 32)(41 52 67)(42 49 68)(43 50 65)(44 51 66)(45 56 60)(46 53 57)(47 54 58)(48 55 59)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 52 3 50)(2 51 4 49)(5 41 7 43)(6 44 8 42)(9 63 11 61)(10 62 12 64)(13 67 15 65)(14 66 16 68)(17 40 19 38)(18 39 20 37)(21 58 23 60)(22 57 24 59)(25 47 27 45)(26 46 28 48)(29 54 31 56)(30 53 32 55)(33 69 35 71)(34 72 36 70)

G:=sub<Sym(72)| (1,40,31)(2,37,32)(3,38,29)(4,39,30)(5,35,27)(6,36,28)(7,33,25)(8,34,26)(9,24,14)(10,21,15)(11,22,16)(12,23,13)(17,54,50)(18,55,51)(19,56,52)(20,53,49)(41,71,45)(42,72,46)(43,69,47)(44,70,48)(57,68,61)(58,65,62)(59,66,63)(60,67,64), (1,13,5)(2,14,6)(3,15,7)(4,16,8)(9,36,37)(10,33,38)(11,34,39)(12,35,40)(17,62,69)(18,63,70)(19,64,71)(20,61,72)(21,25,29)(22,26,30)(23,27,31)(24,28,32)(41,52,67)(42,49,68)(43,50,65)(44,51,66)(45,56,60)(46,53,57)(47,54,58)(48,55,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,52,3,50)(2,51,4,49)(5,41,7,43)(6,44,8,42)(9,63,11,61)(10,62,12,64)(13,67,15,65)(14,66,16,68)(17,40,19,38)(18,39,20,37)(21,58,23,60)(22,57,24,59)(25,47,27,45)(26,46,28,48)(29,54,31,56)(30,53,32,55)(33,69,35,71)(34,72,36,70)>;

G:=Group( (1,40,31)(2,37,32)(3,38,29)(4,39,30)(5,35,27)(6,36,28)(7,33,25)(8,34,26)(9,24,14)(10,21,15)(11,22,16)(12,23,13)(17,54,50)(18,55,51)(19,56,52)(20,53,49)(41,71,45)(42,72,46)(43,69,47)(44,70,48)(57,68,61)(58,65,62)(59,66,63)(60,67,64), (1,13,5)(2,14,6)(3,15,7)(4,16,8)(9,36,37)(10,33,38)(11,34,39)(12,35,40)(17,62,69)(18,63,70)(19,64,71)(20,61,72)(21,25,29)(22,26,30)(23,27,31)(24,28,32)(41,52,67)(42,49,68)(43,50,65)(44,51,66)(45,56,60)(46,53,57)(47,54,58)(48,55,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,52,3,50)(2,51,4,49)(5,41,7,43)(6,44,8,42)(9,63,11,61)(10,62,12,64)(13,67,15,65)(14,66,16,68)(17,40,19,38)(18,39,20,37)(21,58,23,60)(22,57,24,59)(25,47,27,45)(26,46,28,48)(29,54,31,56)(30,53,32,55)(33,69,35,71)(34,72,36,70) );

G=PermutationGroup([[(1,40,31),(2,37,32),(3,38,29),(4,39,30),(5,35,27),(6,36,28),(7,33,25),(8,34,26),(9,24,14),(10,21,15),(11,22,16),(12,23,13),(17,54,50),(18,55,51),(19,56,52),(20,53,49),(41,71,45),(42,72,46),(43,69,47),(44,70,48),(57,68,61),(58,65,62),(59,66,63),(60,67,64)], [(1,13,5),(2,14,6),(3,15,7),(4,16,8),(9,36,37),(10,33,38),(11,34,39),(12,35,40),(17,62,69),(18,63,70),(19,64,71),(20,61,72),(21,25,29),(22,26,30),(23,27,31),(24,28,32),(41,52,67),(42,49,68),(43,50,65),(44,51,66),(45,56,60),(46,53,57),(47,54,58),(48,55,59)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,52,3,50),(2,51,4,49),(5,41,7,43),(6,44,8,42),(9,63,11,61),(10,62,12,64),(13,67,15,65),(14,66,16,68),(17,40,19,38),(18,39,20,37),(21,58,23,60),(22,57,24,59),(25,47,27,45),(26,46,28,48),(29,54,31,56),(30,53,32,55),(33,69,35,71),(34,72,36,70)]])

Q8xC32 is a maximal subgroup of   C32:11SD16  C32:7Q16  C12.26D6  Q8:3- 1+2  Q8:He3

45 conjugacy classes

class 1  2 3A···3H4A4B4C6A···6H12A···12X
order123···34446···612···12
size111···12221···12···2

45 irreducible representations

dim111122
type++-
imageC1C2C3C6Q8C3xQ8
kernelQ8xC32C3xC12C3xQ8C12C32C3
# reps1382418

Matrix representation of Q8xC32 in GL3(F13) generated by

100
030
003
,
900
030
003
,
1200
001
0120
,
100
0910
0104
G:=sub<GL(3,GF(13))| [1,0,0,0,3,0,0,0,3],[9,0,0,0,3,0,0,0,3],[12,0,0,0,0,12,0,1,0],[1,0,0,0,9,10,0,10,4] >;

Q8xC32 in GAP, Magma, Sage, TeX

Q_8\times C_3^2
% in TeX

G:=Group("Q8xC3^2");
// GroupNames label

G:=SmallGroup(72,38);
// by ID

G=gap.SmallGroup(72,38);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-2,180,381,186]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of Q8xC32 in TeX

׿
x
:
Z
F
o
wr
Q
<